

Eartrack’s documentation

An imaging library to detect and track future position of ear on maize plants.

earTrack is released under a Cecill-C [http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html] license.

Installation

	Installation
	Source code installation with Miniconda
	Miniconda installation

	On Linux / Ubuntu / MacOS
	Create virtual environment and activate it

	Dependencies install

	Eartrack install

	On Windows
	Create virtual environment and activate it

	Dependencies install

	Eartrack install

Notebooks Tutorial

	Getting started with eartrack [http://nbviewer.ipython.org/urls/raw.github.com/openalea/eartrack/master/example/getting_started_with_eartrack.ipynb]

	Eartrack step by step [http://nbviewer.ipython.org/urls/raw.github.com/openalea/eartrack/master/example/eartrack_step_by_step.ipynb]

API References

	References
	API Reference
	binarisation

	eartrack

Authors

	Nicolas Brichet <nicolas.brichet@inra.fr>

	Christian Fournier <christian.fournier@inra.fr>

	Simon Artzet <simon.artzet@gmail.com>

	Christophe Pradal <christophe.pradal@inria.fr>

	Nicolas Brichet <nicolas.brichet@inra.fr>

	Christian Fournier <christian.fournier@inra.fr>

	Simon Artzet <simon.artzet@gmail.com>

	Christophe Pradal <christophe.pradal@inria.fr>

License

Citation

Brichet N, Fournier C, Turc O, Strauss O, Artzet S, Pradal C, Welcker C, Tardieu F, Cabrera-Bosquet L. 2017.
A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform.
Plant Methods 13:96 doi:10.1186/s13007-017-0246-7 [https://doi.org/10.1186/s13007-017-0246-7]

Indices and tables

	Index

	Search Page

Installation

	Source code installation with Miniconda
	Miniconda installation

	On Linux / Ubuntu / MacOS
	Create virtual environment and activate it

	Dependencies install

	Eartrack install

	On Windows
	Create virtual environment and activate it

	Dependencies install

	Eartrack install

Source code installation with Miniconda

Miniconda installation

Follow official website instruction to install miniconda :

http://conda.pydata.org/miniconda.html

On Linux / Ubuntu / MacOS

Create virtual environment and activate it

conda create --name eartrack python
source activate eartrack

Dependencies install

conda install -c conda-forge numpy matplotlib opencv scikit-image
conda install -c openalea openalea.deploy openalea.core

(Optional) Package managing tools :

conda install -c conda-forge notebook nose sphinx sphinx_rtd_theme

Eartrack install

git clone https://github.com/openalea/eartrack.git
cd eartrack
python setup.py install --prefix=$CONDA_PREFIX

On Windows

Create virtual environment and activate it

conda create --name eartrack python
activate eartrack

Dependencies install

conda install -c conda-forge numpy matplotlib scikit-image opencv pywin32
conda install -c openalea openalea.deploy openalea.core

(Optional) Package managing tools :

conda install -c conda-forge notebook nose sphinx sphinx_rtd_theme

Eartrack install

git clone https://github.com/openalea/eartrack.git
cd eartrack
python setup.py install --prefix=%CONDA_PREFIX%

Notebooks Tutorial

	Getting started with eartrack [http://nbviewer.ipython.org/urls/raw.github.com/openalea/eartrack/master/example/getting_started_with_eartrack.ipynb]

	Eartrack step by step [http://nbviewer.ipython.org/urls/raw.github.com/openalea/eartrack/master/example/eartrack_step_by_step.ipynb]

References

	Release

	1.0.0

	Date

	Mar 08, 2018

An imaging library to detect and track future position of ear on maize plants.

API Reference

The exact API of all functions and classes, as given by the docstrings. The API
documents expected types and allowed features for all functions, and all
parameters available for the algorithms.

	binarisation
	openalea.eartrack.binarisation.dilate

	openalea.eartrack.binarisation.open

	openalea.eartrack.binarisation.close

	openalea.eartrack.binarisation.erode_dilate

	openalea.eartrack.binarisation.threshold_hsv

	openalea.eartrack.binarisation.threshold_meanshift

	openalea.eartrack.binarisation.mean_shift_hsv

	openalea.eartrack.binarisation.mean_image

	openalea.eartrack.binarisation.color_tree

	openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_1

	openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_2

	eartrack
	openalea.eartrack.eartrack.top_analysis

	openalea.eartrack.eartrack.side_analysis

	openalea.eartrack.eartrack.get_skeleton

	openalea.eartrack.eartrack.distance_transform

	openalea.eartrack.eartrack.binary_biggest_region

	openalea.eartrack.eartrack.get_endpoints

	openalea.eartrack.eartrack.skeleton_cleaning

	openalea.eartrack.eartrack.find_route

	openalea.eartrack.eartrack.find_cross_route

	openalea.eartrack.eartrack.find_cross_route

	openalea.eartrack.eartrack.get_distances

	openalea.eartrack.eartrack.derivate

	openalea.eartrack.eartrack.differential_cleaning

	openalea.eartrack.eartrack.differential_separate

	openalea.eartrack.eartrack.majors_axes_regression_ww

	openalea.eartrack.eartrack.majors_axes_regression_line

	openalea.eartrack.eartrack.robust_majors_axes_regression_ww

	openalea.eartrack.eartrack.get_view_angles

	openalea.eartrack.eartrack.robust_mean

	openalea.eartrack.eartrack.ear_detection

binarisation

	dilate(binary_image[, kshape, ksize, iterations])

	Dilate an image

	open(binary_image[, kshape, ksize, iterations])

	Open an image

	close(binary_image[, kshape, ksize, iterations])

	Close an image

	erode_dilate(binary_image[, kernel_shape, …])

	Applied a morphology (erode & dilate) on binary_image on mask ROI.

	threshold_hsv(image, hsv_min, hsv_max[, mask])

	Binarize HSV image with hsv_min and hsv_max parameters.

	threshold_meanshift(image, mean_image[, …])

	Threshold pixels in numpy array such as:

	mean_shift_hsv(image, mean_img[, threshold, …])

	Segmentation using mean shift method

	mean_image(images)

	Compute the mean of a image list.

	color_tree(bgr[, cabin, mask_pot, …])

	Segmentation using decision tree and mask

	decision_tree_threshold_phenoarch_1(bgr)

	Implementation of a decision tree

	decision_tree_threshold_phenoarch_2(bgr)

	Implementation of a decision tree

openalea.eartrack.binarisation.dilate

	
openalea.eartrack.binarisation.dilate(binary_image, kshape='MORPH_CROSS', ksize=3, iterations=1)

	Dilate an image

Dilate an image using opencv dilate method
:param binary_image: numpy.ndarray

2-D array

	Parameters

	
	kshape – str, opt
See opencv documentation

	ksize – int, opt
See opencv documentation

	iterations – int, opt
Number of iteration of dilatation

	Returns

	dilated : numpy.ndarray 2-D image

openalea.eartrack.binarisation.open

	
openalea.eartrack.binarisation.open(binary_image, kshape='MORPH_CROSS', ksize=3, iterations=1)

	Open an image

Perform morphology opening algorithm on image using opencv method
:param binary_image: numpy.ndarray

2-D array

	Parameters

	
	kshape – str, opt
See opencv documentation

	ksize – int, opt
See opencv documentation

	iterations – int, opt
Number of iteration

	Returns

	opened : numpy.ndarray 2-D image

openalea.eartrack.binarisation.close

	
openalea.eartrack.binarisation.close(binary_image, kshape='MORPH_CROSS', ksize=3, iterations=1)

	Close an image

Perform morphology closing algorithm on image using opencv method
:param binary_image: numpy.ndarray

2-D array

	Parameters

	
	kshape – str, opt
See opencv documentation

	ksize – int, opt
See opencv documentation

	iterations – int, opt
Number of iteration

	Returns

	closed : numpy.ndarray 2-D image

openalea.eartrack.binarisation.erode_dilate

	
openalea.eartrack.binarisation.erode_dilate(binary_image, kernel_shape=(3, 3), iterations=1, mask=None)

	Applied a morphology (erode & dilate) on binary_image on mask ROI.

	Parameters

	
	binary_image (numpy.ndarray) – 2-D array

	kernel_shape ((N, M) of integers, optional) – kernel shape of (erode & dilate) applied to binary_image

	iterations (int, optional) – number of successive iteration of (erode & dilate)

	mask (numpy.ndarray, optional) – Array of same shape as image. Only points at which mask == True
will be processed.

	Returns

	out – Binary Image

	Return type

	numpy.ndarray

openalea.eartrack.binarisation.threshold_hsv

	
openalea.eartrack.binarisation.threshold_hsv(image, hsv_min, hsv_max, mask=None)

	Binarize HSV image with hsv_min and hsv_max parameters.
=> cv2.inRange(hsv_image, hsv_min, hsv_max)

If mask is not None :
=> cv2.bitwise_and(binary_hsv_image, mask)

	Parameters

	
	image (numpy.ndarray of integers) – 3-D array of image RGB

	hsv_min (tuple of integers) – HSV value of minimum range

	hsv_max (tuple of integers) – HSV value of maximum range

	mask (numpy.ndarray, optional) – Array of same shape as image. Only points at which mask == True
will be thresholded.

	Returns

	out – Thresholded binary image

	Return type

	numpy.ndarray

See also

threshold_meanshift()

openalea.eartrack.binarisation.threshold_meanshift

	
openalea.eartrack.binarisation.threshold_meanshift(image, mean_image, threshold=0.3, mask=None)

	Threshold pixels in numpy array such as:

image / mean <= (1.0 - threshold)

If reverse is True (Inequality is reversed):

image / mean <= (1.0 + threshold

	Parameters

	
	image (numpy.ndarray of integers) – 3-D array

	mean_image (numpy.ndarray of the same shape as 'image') – 3-D array ‘mean_image’

	threshold (float, optional) – Threshold value. Must between 0.0 and 1.0

	reverse (bool, optional) – If True reverse inequality

	mask (numpy.ndarray, optional) – Array of same shape as image. Only points at which mask == True
will be thresholded.

	Returns

	out – Thresholded binary image

	Return type

	numpy.ndarray

See also

get_mean_image(), threshold_hsv()

openalea.eartrack.binarisation.mean_shift_hsv

	
openalea.eartrack.binarisation.mean_shift_hsv(image, mean_img, threshold=0.3, hsv_min=(30, 11, 0), hsv_max=(129, 254, 141), iterations_clean_noise=3, iterations=1, mask_mean_shift=None, mask_hsv=None, mask_clean_noise=None)

	Segmentation using mean shift method

Compute segmentation of an object in image using a combination of
meanshift method and hsv threshold

	Parameters

	
	image – numpy.ndarray of integers
3-D array

	mean_img – numpy.ndarray of integers (same shape as ‘image’)
3-D array

	threshold – float, optional
Threshold value. Must between 0.0 and 1.0

	hsv_min – tuple of 3 int, optional
Minimum values to threshold hsv image. Values must be between 0 and 255

	hsv_max – tuple of 3 int, optional
Maximum values to threshold hsv image. Values must be between 0 and 255

	iterations_clean_noise – int, optional
Number of iterations to clean noise on binary result image under mask

	iterations – int, optional
Number of iterations to clean noise on binary result image

	mask_mean_shift – numpy.ndarray, optional
Array 2-D of same shape as image. Only points at which mask == True
will be calculated in meanshift method.

	mask_hsv – numpy.ndarray, optional
Array 2-D of same shape as image. Only points at which mask == True
will be calculated with hsv method.

	mask_clean_noise – numpy.ndarray, optional
Array 2-D of same shape as image. Only points at which mask == True
will be cleaned

	Returns

	
	result: numpy.ndarray 2-D of same shape as image

	Binary image representing plant segmentation of ‘image’

openalea.eartrack.binarisation.mean_image

	
openalea.eartrack.binarisation.mean_image(images)

	Compute the mean of a image list.

	Parameters

	images ([numpy.ndarray of integers]) – list of 3-D array

	Returns

	out – Mean of the list image

	Return type

	numpy.ndarray

See also

threshold_meanshift()

openalea.eartrack.binarisation.color_tree

	
openalea.eartrack.binarisation.color_tree(bgr, cabin=None, mask_pot=None, mask_rails=None, empty_img=None)

	Segmentation using decision tree and mask

Platform specific method, masks and decision trees depend on imagery cabin
:param bgr: numpy.ndarray of integers

3-D array

	Parameters

	
	cabin – string, 2 possible values : cabin-1 or cabin-2

	mask_pot – mask_mean_shift: numpy.ndarray, optional
Array 2-D of same shape as bgr representing pot position on image

	mask_rails – mask_mean_shift: numpy.ndarray, optional
Array 2-D of same shape as bgr representing rails position

	empty_img – numpy.ndarray of integers
3-D array of empty cabin (without plant)

	Returns

	
	resultnumpy.ndarray 2-D of same shape as bgr

	Binary image representing plant segmentation of ‘bgr’

openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_1

	
openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_1(bgr)

	Implementation of a decision tree

Platform specific method, for top image in cabin 1 of Phenoarch
:param bgr: numpy.ndarray of integers

3-D array

	Returns

	
	resultnumpy.ndarray 2-D of same shape as bgr

	Binary image representing True or False value of each pixel
threw decision tree

openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_2

	
openalea.eartrack.binarisation.decision_tree_threshold_phenoarch_2(bgr)

	Implementation of a decision tree

Platform specific method, for top image in cabin 1 of Phenoarch
:param bgr: numpy.ndarray of integers

3-D array

	Returns

	
	resultnumpy.ndarray 2-D of same shape as bgr

	Binary image representing True or False value of each pixel
threw decision tree

eartrack

	top_analysis(top_binary_img, …)

	Top image analysis

	side_analysis(binary_img, color_img, angle, …)

	Side image analysis for ear tracking

	get_skeleton(binary_image)

	Perform skeleton on image

	distance_transform(binary_image[, …])

	Perform distance transform on image

	binary_biggest_region(binary_image)

	Look for the biggest object on a binary image

	get_endpoints(skeleton, center, height)

	Look for stem extremities

	skeleton_cleaning(skeleton, begin)

	Clean the skeleton

	find_route(skeleton, begin, end)

	Perform shortest path algorithm on skeleton image

	find_cross_route(skeleton, begin)

	Perform shortest path algorithm on skeleton image unknowing upper node

	find_cross_route(skeleton, begin)

	Perform shortest path algorithm on skeleton image unknowing upper node

	get_distances(route, distance_transform_img)

	Get the distances transform values along a route

	derivate(route)

	Perform discrete derivative on a curve

	differential_cleaning(diff, x, y, max_space, …)

	Clean derivatives values

	differential_separate(x, y, indices)

	Deep analysis of derivatives values

	majors_axes_regression_ww(pixels)

	Performs a major axis regression on 2D distributed dots

	majors_axes_regression_line(binary_img)

	Performs a major axis regression on binary image

	robust_majors_axes_regression_ww(pixels)

	Performs a robust major axis regression on 2D distributed dots

	get_view_angles(binary_img, mask)

	Extract interesting view angles from top image

	robust_mean(values, images[, std_error])

	Look for most representative position in a small set of positions

	ear_detection(distances)

	Look for ear in a stem width curve

openalea.eartrack.eartrack.top_analysis

	
openalea.eartrack.eartrack.top_analysis(top_binary_img, existing_angles, center_mask)

	Top image analysis

Analyse top binary image to determine best side view images allowing to
see the stem and find ear
:param top_binary_img: (numpy array of uint8) representing binary image
:param existing_angles: (list of int) list of existing angle for this
snapshot
:param center_mask: (numpy array of uint8) mask representing the center of
image to know if a leave can be considered as obstructing
:return:

(list of int) informative angles of view to analyse
(numpy array of uint8) result image for log
(string) log to write

openalea.eartrack.eartrack.side_analysis

	
openalea.eartrack.eartrack.side_analysis(binary_img, color_img, angle, pot_height, pot_center)

	Side image analysis for ear tracking

Perform the analysis of side view maize plant’s image to extract ear
position
:param binary_img: (numpy array of uint8) binary image
:param color_img: (numpy array of uint8) color image in BGR matrix
:param angle: (int) view angle of the image
:param pot_height: (int) height position of the top of the pot
:param pot_center: (int) width position of the center of the pot
:return: positions: (np array of uint numpy array) Kept position(s) as

	probable(s) ear(s), each position as [x, y, angle]

	useful_images: (np array of str) ids of images corresponding to

	each position

	log: (string) log to write
img_debug: (list of numpy array) list of output images from

different stages of calculation

openalea.eartrack.eartrack.get_skeleton

	
openalea.eartrack.eartrack.get_skeleton(binary_image)

	Perform skeleton on image

Use skimage medial axis to perform skeleton on binary image
:param binary_image: (numpy 2D array of binary uint8) binary image to
perform skeleton
:return: (numpy 2D array of binary uint8) binary image of skeleton

openalea.eartrack.eartrack.distance_transform

	
openalea.eartrack.eartrack.distance_transform(binary_image, distance_type=1, mask_size=5)

	Perform distance transform on image

Perform opencv distance transform on binary image
:param binary_image: (numpy 2D array of binary uint8) binary image to
perform distance transorm
:param distance_type: see cv::DistanceTypes
:param mask_size: see cv::DistanceTransformMasks
:return: (numpy 2D array of uint8) binary image transformed in distances

openalea.eartrack.eartrack.binary_biggest_region

	
openalea.eartrack.eartrack.binary_biggest_region(binary_image)

	Look for the biggest object on a binary image

	Parameters

	binary_image – (numpy 2D array of binary uint8) binary image to

analyse
:return: (numpy 2D array of binary uint8) binary image containing only the
biggest object

openalea.eartrack.eartrack.get_endpoints

	
openalea.eartrack.eartrack.get_endpoints(skeleton, center, height)

	Look for stem extremities

Try to find the bottom and upper node of the stem in a maize plant
:param skeleton: (numpy 2D array of binary uint8) representing the skeleton
of side view image of a maize plant
:param center: (int) pixel in the width center of the pot
(depending on the plateform and the calibration)
:param height: (int) pixel in the height top of the pot
(depending on the plateform and the calibration)
:return: (list of 2 int) pixel of the bottom of the stem

(list of 2 int) pixel of the top of the stem

openalea.eartrack.eartrack.skeleton_cleaning

	
openalea.eartrack.eartrack.skeleton_cleaning(skeleton, begin)

	Clean the skeleton

	Parameters

	skeleton – (numpy 2D array of binary uint8) representing the skeleton

of side view image of maize plant
:param begin: bottm of stem
:return: (numpy 2D array of binary uint8) representing cleaned skeleton

openalea.eartrack.eartrack.find_route

	
openalea.eartrack.eartrack.find_route(skeleton, begin, end)

	Perform shortest path algorithm on skeleton image

Find the shortest route on a skeleton between 2 pixels using graph
shortest path algorithm
:param skeleton: (numpy 2D array of binary uint8) representing the skeleton
of side view image of a maize plant
:param begin: (list of 2 int) pixel of the bottom of the stem
:param end: (list of 2 int) pixel of the top of the stem
:return: (list of list of 2 int) list of all the pixels to follow to get
the shortest path between begin and end

openalea.eartrack.eartrack.find_cross_route

	
openalea.eartrack.eartrack.find_cross_route(skeleton, begin)

	Perform shortest path algorithm on skeleton image unknowing upper node

Find the shortest route on a skeleton between a beginning pixel and the
upper cross on the skeleton using graph shortest path algorithm
:param skeleton: (numpy 2D array of binary uint8) representing the skeleton
of side view image of a maize plant
:param begin: (list of 2 int) pixel of the bottom of the stem
:return: (list of list of 2 int) list of all the pixels to follow to get
the shortest path between begin and upper cross

openalea.eartrack.eartrack.find_cross_route

	
openalea.eartrack.eartrack.find_cross_route(skeleton, begin)

	Perform shortest path algorithm on skeleton image unknowing upper node

Find the shortest route on a skeleton between a beginning pixel and the
upper cross on the skeleton using graph shortest path algorithm
:param skeleton: (numpy 2D array of binary uint8) representing the skeleton
of side view image of a maize plant
:param begin: (list of 2 int) pixel of the bottom of the stem
:return: (list of list of 2 int) list of all the pixels to follow to get
the shortest path between begin and upper cross

openalea.eartrack.eartrack.get_distances

	
openalea.eartrack.eartrack.get_distances(route, distance_transform_img)

	Get the distances transform values along a route

‘route’ are coordinates in the ‘distance_transform_img’ shape.
:param route: (list of list of 2 int) list of all the pixels to follow a
route on image
:param distance_transform_img: (numpy 2D array of uint8) binary image
transformed in distances
:return: (list of int) representing the distances values all along the route

openalea.eartrack.eartrack.derivate

	
openalea.eartrack.eartrack.derivate(route)

	Perform discrete derivative on a curve

Perform discrete derivative on a route in order to analyse variation of
directions
:param route: (list of list of 2 int) list of all the pixels to follow a
route on image
:return: diff: (list of int) values in [-1, 0, 1] representing the variation
of the route

x: (list of int) x original position of each diff value
y: (list of int) y original position of each diff value

openalea.eartrack.eartrack.differential_cleaning

	
openalea.eartrack.eartrack.differential_cleaning(diff, x, y, max_space, min_length, min_height)

	Clean derivatives values

Analyse derivatives values to keep only the significant variations
:param diff: (list of int) values in [-1, 0, 1] representing the variation
of a route
:param x: (list of int) x original position of each diff value
:param y: (list of int) y original position of each diff value
:param max_space: (int) max length (in pixels) of diff null to reckon that

the increase or decrease is no longer the same variation

	Parameters

	min_length – (int) minimum length of variation to reckon that the

variation is significant
:param min_height: minimum height of variation to reckon that the
variation is significant
:return: (list of 3 int list) describing the diff values by parts of same
variation [[begin, end, variation]]

openalea.eartrack.eartrack.differential_separate

	
openalea.eartrack.eartrack.differential_separate(x, y, indices)

	Deep analysis of derivatives values

Go deeper in derivatives values analyse to find different fast of increase and
decrease in order to detect increases and decreases even on inclined stem
:param x: (list of int) x original position of each diff value
:param y: (list of int) y original position of each diff value
:param indices: (list of 3 int list) describing the differentials values by

parts of same variation [[begin, end, variation]]

	Returns

	new_indexes : (list of 3 int list) describing new variations
total_means : (list of float) slope of each part of ‘new_indexes’

openalea.eartrack.eartrack.majors_axes_regression_ww

	
openalea.eartrack.eartrack.majors_axes_regression_ww(pixels)

	Performs a major axis regression on 2D distributed dots

	Parameters

	pixels – (np array of 2 np array of int) distributed dots to perform

regression
:return: a: (float) slope of regression line

b: (float) intercept of regression line
mean_error: (float) mean error of dots to regression line

openalea.eartrack.eartrack.majors_axes_regression_line

	
openalea.eartrack.eartrack.majors_axes_regression_line(binary_img)

	Performs a major axis regression on binary image

True pixels of image are used as distributed dots
:param binary_img: (numpy 2D binary uint8 array) binary image to perform
regression
:return: result: (numpy 3D uint8 array) color image with regression line
draws on it

a: (float) slope of regression line
b: (float) intercept of regression line
mean_error: (float) mean error of pixels to regression line
alpha: angle of regression line (in degrees)

openalea.eartrack.eartrack.robust_majors_axes_regression_ww

	
openalea.eartrack.eartrack.robust_majors_axes_regression_ww(pixels)

	Performs a robust major axis regression on 2D distributed dots

Robustness come from ‘hinich et al.’ algorithm
:param pixels: (np array of 2 np array of int) distributed dots to perform
regression
:return: a: (float) slope of robust regression line

b: (float) intercept of robust regression line
useful_pixels: (np array of 2 np array of int) dots kept by robust

	regression

	useless_pixels: (np array of 2 np array of int) dots ousted by

robust regression

openalea.eartrack.eartrack.get_view_angles

	
openalea.eartrack.eartrack.get_view_angles(binary_img, mask)

	Extract interesting view angles from top image

	Parameters

	
	binary_img – (numpy array of uint8) representing binary image

	mask – (numpy array of uint8) mask representing the center of

image to know if a leave can be considered as obstructing
:return:

(list of int) informative angles of view to analyse
(numpy array of uint8) result image for log
(string) log to write

openalea.eartrack.eartrack.robust_mean

	
openalea.eartrack.eartrack.robust_mean(values, images, std_error=20)

	Look for most representative position in a small set of positions

This function perform a ‘vote’ between few values to extract the most
representative(s) and the corresponding images
:param values: (2 dimensional numpy float array) the vote will be perform on
first value of each 2 values array
:param images: (numpy array of string) id of image corresponding to each
value
:param std_error: (int) maximum standard error to reckon that 2 values are
in the same group
:return: means: (2 values numpy array) mean value of kept 2 values array

	((-1, -1) if standard error remains more than std_error param)

	values: (2 dimensional numpy float array) kept values as most

	representatives

	images: (numpy array of string) id of image corresponding to each

kept value

openalea.eartrack.eartrack.ear_detection

	
openalea.eartrack.eartrack.ear_detection(distances)

	Look for ear in a stem width curve

	Parameters

	distances – (list of int) representing distance transform values all

along the stem
:return: (list of list of 2 int) first value of each 2 int list is a

probable solution, second value is its weight

(list of (list of (2 int and one list))) representing parts of
distances interpreted as stem (begin, end, [values])
(list of (list of (2 int and one list))) representing parts of
distances interpreted as leaves (begin, end, [values])
(list of 2 int), width of stem under ear and upper ear

Authors

	Nicolas Brichet <nicolas.brichet@inra.fr>

	Christian Fournier <christian.fournier@inra.fr>

	Simon Artzet <simon.artzet@gmail.com>

	Christophe Pradal <christophe.pradal@inria.fr>

License

earTrack is released under a Cecill-C [http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html] license.

CeCILL-C FREE SOFTWARE LICENSE AGREEMENT

Notice

This Agreement is a Free Software license agreement that is the result
of discussions between its authors in order to ensure compliance with
the two main principles guiding its drafting:

	firstly, compliance with the principles governing the distribution
of Free Software: access to source code, broad rights granted to
users,

	secondly, the election of a governing law, French law, with which
it is conformant, both as regards the law of torts and
intellectual property law, and the protection that it offers to
both authors and holders of the economic rights over software.

The authors of the CeCILL-C (for Ce[a] C[nrs] I[nria] L[ogiciel] L[ibre])
license are:

Commissariat à l’Energie Atomique - CEA, a public scientific, technical
and industrial research establishment, having its principal place of
business at 25 rue Leblanc, immeuble Le Ponant D, 75015 Paris, France.

Centre National de la Recherche Scientifique - CNRS, a public scientific
and technological establishment, having its principal place of business
at 3 rue Michel-Ange, 75794 Paris cedex 16, France.

Institut National de Recherche en Informatique et en Automatique -
INRIA, a public scientific and technological establishment, having its
principal place of business at Domaine de Voluceau, Rocquencourt, BP
105, 78153 Le Chesnay cedex, France.

Preamble

The purpose of this Free Software license agreement is to grant users
the right to modify and re-use the software governed by this license.

The exercising of this right is conditional upon the obligation to make
available to the community the modifications made to the source code of
the software so as to contribute to its evolution.

In consideration of access to the source code and the rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty and the software’s author, the holder of the
economic rights, and the successive licensors only have limited liability.

In this respect, the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user are brought to
the user’s attention, given its Free Software status, which may make it
complicated to use, with the result that its use is reserved for
developers and experienced professionals having in-depth computer
knowledge. Users are therefore encouraged to load and test the
suitability of the software as regards their requirements in conditions
enabling the security of their systems and/or data to be ensured and,
more generally, to use and operate it in the same conditions of
security. This Agreement may be freely reproduced and published,
provided it is not altered, and that no provisions are either added or
removed herefrom.

This Agreement may apply to any or all software for which the holder of
the economic rights decides to submit the use thereof to its provisions.

Article 1 - DEFINITIONS

For the purpose of this Agreement, when the following expressions
commence with a capital letter, they shall have the following meaning:

Agreement: means this license agreement, and its possible subsequent
versions and annexes.

Software: means the software in its Object Code and/or Source Code form
and, where applicable, its documentation, “as is” when the Licensee
accepts the Agreement.

Initial Software: means the Software in its Source Code and possibly its
Object Code form and, where applicable, its documentation, “as is” when
it is first distributed under the terms and conditions of the Agreement.

Modified Software: means the Software modified by at least one
Integrated Contribution.

Source Code: means all the Software’s instructions and program lines to
which access is required so as to modify the Software.

Object Code: means the binary files originating from the compilation of
the Source Code.

Holder: means the holder(s) of the economic rights over the Initial
Software.

Licensee: means the Software user(s) having accepted the Agreement.

Contributor: means a Licensee having made at least one Integrated
Contribution.

Licensor: means the Holder, or any other individual or legal entity, who
distributes the Software under the Agreement.

Integrated Contribution: means any or all modifications, corrections,
translations, adaptations and/or new functions integrated into the
Source Code by any or all Contributors.

Related Module: means a set of sources files including their
documentation that, without modification to the Source Code, enables
supplementary functions or services in addition to those offered by the
Software.

Derivative Software: means any combination of the Software, modified or
not, and of a Related Module.

Parties: mean both the Licensee and the Licensor.

These expressions may be used both in singular and plural form.

Article 2 - PURPOSE

The purpose of the Agreement is the grant by the Licensor to the
Licensee of a non-exclusive, transferable and worldwide license for the
Software as set forth in Article 5 hereinafter for the whole term of the
protection granted by the rights over said Software.

Article 3 - ACCEPTANCE

3.1 The Licensee shall be deemed as having accepted the terms and
conditions of this Agreement upon the occurrence of the first of the
following events:

	(i) loading the Software by any or all means, notably, by
downloading from a remote server, or by loading from a physical
medium;

	(ii) the first time the Licensee exercises any of the rights
granted hereunder.

3.2 One copy of the Agreement, containing a notice relating to the
characteristics of the Software, to the limited warranty, and to the
fact that its use is restricted to experienced users has been provided
to the Licensee prior to its acceptance as set forth in Article 3.1
hereinabove, and the Licensee hereby acknowledges that it has read and
understood it.

Article 4 - EFFECTIVE DATE AND TERM

4.1 EFFECTIVE DATE

The Agreement shall become effective on the date when it is accepted by
the Licensee as set forth in Article 3.1.

4.2 TERM

The Agreement shall remain in force for the entire legal term of
protection of the economic rights over the Software.

Article 5 - SCOPE OF RIGHTS GRANTED

The Licensor hereby grants to the Licensee, who accepts, the following
rights over the Software for any or all use, and for the term of the
Agreement, on the basis of the terms and conditions set forth hereinafter.

Besides, if the Licensor owns or comes to own one or more patents
protecting all or part of the functions of the Software or of its
components, the Licensor undertakes not to enforce the rights granted by
these patents against successive Licensees using, exploiting or
modifying the Software. If these patents are transferred, the Licensor
undertakes to have the transferees subscribe to the obligations set
forth in this paragraph.

5.1 RIGHT OF USE

The Licensee is authorized to use the Software, without any limitation
as to its fields of application, with it being hereinafter specified
that this comprises:

	permanent or temporary reproduction of all or part of the Software
by any or all means and in any or all form.

	loading, displaying, running, or storing the Software on any or
all medium.

	entitlement to observe, study or test its operation so as to
determine the ideas and principles behind any or all constituent
elements of said Software. This shall apply when the Licensee
carries out any or all loading, displaying, running, transmission
or storage operation as regards the Software, that it is entitled
to carry out hereunder.

5.2 RIGHT OF MODIFICATION

The right of modification includes the right to translate, adapt,
arrange, or make any or all modifications to the Software, and the right
to reproduce the resulting software. It includes, in particular, the
right to create a Derivative Software.

The Licensee is authorized to make any or all modification to the
Software provided that it includes an explicit notice that it is the
author of said modification and indicates the date of the creation thereof.

5.3 RIGHT OF DISTRIBUTION

In particular, the right of distribution includes the right to publish,
transmit and communicate the Software to the general public on any or
all medium, and by any or all means, and the right to market, either in
consideration of a fee, or free of charge, one or more copies of the
Software by any means.

The Licensee is further authorized to distribute copies of the modified
or unmodified Software to third parties according to the terms and
conditions set forth hereinafter.

5.3.1 DISTRIBUTION OF SOFTWARE WITHOUT MODIFICATION

The Licensee is authorized to distribute true copies of the Software in
Source Code or Object Code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

	a copy of the Agreement,

	a notice relating to the limitation of both the Licensor’s
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the Object Code of the Software is
redistributed, the Licensee allows effective access to the full Source
Code of the Software at a minimum during the entire period of its
distribution of the Software, it being understood that the additional
cost of acquiring the Source Code shall not exceed the cost of
transferring the data.

5.3.2 DISTRIBUTION OF MODIFIED SOFTWARE

When the Licensee makes an Integrated Contribution to the Software, the
terms and conditions for the distribution of the resulting Modified
Software become subject to all the provisions of this Agreement.

The Licensee is authorized to distribute the Modified Software, in
source code or object code form, provided that said distribution
complies with all the provisions of the Agreement and is accompanied by:

	a copy of the Agreement,

	a notice relating to the limitation of both the Licensor’s
warranty and liability as set forth in Articles 8 and 9,

and that, in the event that only the object code of the Modified
Software is redistributed, the Licensee allows effective access to the
full source code of the Modified Software at a minimum during the entire
period of its distribution of the Modified Software, it being understood
that the additional cost of acquiring the source code shall not exceed
the cost of transferring the data.

5.3.3 DISTRIBUTION OF DERIVATIVE SOFTWARE

When the Licensee creates Derivative Software, this Derivative Software
may be distributed under a license agreement other than this Agreement,
subject to compliance with the requirement to include a notice
concerning the rights over the Software as defined in Article 6.4.
In the event the creation of the Derivative Software required modification
of the Source Code, the Licensee undertakes that:

	the resulting Modified Software will be governed by this Agreement,

	the Integrated Contributions in the resulting Modified Software
will be clearly identified and documented,

	the Licensee will allow effective access to the source code of the
Modified Software, at a minimum during the entire period of
distribution of the Derivative Software, such that such
modifications may be carried over in a subsequent version of the
Software; it being understood that the additional cost of
purchasing the source code of the Modified Software shall not
exceed the cost of transferring the data.

5.3.4 COMPATIBILITY WITH THE CeCILL LICENSE

When a Modified Software contains an Integrated Contribution subject to
the CeCILL license agreement, or when a Derivative Software contains a
Related Module subject to the CeCILL license agreement, the provisions
set forth in the third item of Article 6.4 are optional.

Article 6 - INTELLECTUAL PROPERTY

6.1 OVER THE INITIAL SOFTWARE

The Holder owns the economic rights over the Initial Software. Any or
all use of the Initial Software is subject to compliance with the terms
and conditions under which the Holder has elected to distribute its work
and no one shall be entitled to modify the terms and conditions for the
distribution of said Initial Software.

The Holder undertakes that the Initial Software will remain ruled at
least by this Agreement, for the duration set forth in Article 4.2.

6.2 OVER THE INTEGRATED CONTRIBUTIONS

The Licensee who develops an Integrated Contribution is the owner of the
intellectual property rights over this Contribution as defined by
applicable law.

6.3 OVER THE RELATED MODULES

The Licensee who develops a Related Module is the owner of the
intellectual property rights over this Related Module as defined by
applicable law and is free to choose the type of agreement that shall
govern its distribution under the conditions defined in Article 5.3.3.

6.4 NOTICE OF RIGHTS

The Licensee expressly undertakes:

	not to remove, or modify, in any manner, the intellectual property
notices attached to the Software;

	to reproduce said notices, in an identical manner, in the copies
of the Software modified or not;

	to ensure that use of the Software, its intellectual property
notices and the fact that it is governed by the Agreement is
indicated in a text that is easily accessible, specifically from
the interface of any Derivative Software.

The Licensee undertakes not to directly or indirectly infringe the
intellectual property rights of the Holder and/or Contributors on the
Software and to take, where applicable, vis-à-vis its staff, any and all
measures required to ensure respect of said intellectual property rights
of the Holder and/or Contributors.

Article 7 - RELATED SERVICES

7.1 Under no circumstances shall the Agreement oblige the Licensor to
provide technical assistance or maintenance services for the Software.

However, the Licensor is entitled to offer this type of services. The
terms and conditions of such technical assistance, and/or such
maintenance, shall be set forth in a separate instrument. Only the
Licensor offering said maintenance and/or technical assistance services
shall incur liability therefor.

7.2 Similarly, any Licensor is entitled to offer to its licensees, under
its sole responsibility, a warranty, that shall only be binding upon
itself, for the redistribution of the Software and/or the Modified
Software, under terms and conditions that it is free to decide. Said
warranty, and the financial terms and conditions of its application,
shall be subject of a separate instrument executed between the Licensor
and the Licensee.

Article 8 - LIABILITY

8.1 Subject to the provisions of Article 8.2, the Licensee shall be
entitled to claim compensation for any direct loss it may have suffered
from the Software as a result of a fault on the part of the relevant
Licensor, subject to providing evidence thereof.

8.2 The Licensor’s liability is limited to the commitments made under
this Agreement and shall not be incurred as a result of in particular:
(i) loss due the Licensee’s total or partial failure to fulfill its
obligations, (ii) direct or consequential loss that is suffered by the
Licensee due to the use or performance of the Software, and (iii) more
generally, any consequential loss. In particular the Parties expressly
agree that any or all pecuniary or business loss (i.e. loss of data,
loss of profits, operating loss, loss of customers or orders,
opportunity cost, any disturbance to business activities) or any or all
legal proceedings instituted against the Licensee by a third party,
shall constitute consequential loss and shall not provide entitlement to
any or all compensation from the Licensor.

Article 9 - WARRANTY

9.1 The Licensee acknowledges that the scientific and technical
state-of-the-art when the Software was distributed did not enable all
possible uses to be tested and verified, nor for the presence of
possible defects to be detected. In this respect, the Licensee’s
attention has been drawn to the risks associated with loading, using,
modifying and/or developing and reproducing the Software which are
reserved for experienced users.

The Licensee shall be responsible for verifying, by any or all means,
the suitability of the product for its requirements, its good working
order, and for ensuring that it shall not cause damage to either persons
or properties.

9.2 The Licensor hereby represents, in good faith, that it is entitled
to grant all the rights over the Software (including in particular the
rights set forth in Article 5).

9.3 The Licensee acknowledges that the Software is supplied “as is” by
the Licensor without any other express or tacit warranty, other than
that provided for in Article 9.2 and, in particular, without any warranty
as to its commercial value, its secured, safe, innovative or relevant
nature.

Specifically, the Licensor does not warrant that the Software is free
from any error, that it will operate without interruption, that it will
be compatible with the Licensee’s own equipment and software
configuration, nor that it will meet the Licensee’s requirements.

9.4 The Licensor does not either expressly or tacitly warrant that the
Software does not infringe any third party intellectual property right
relating to a patent, software or any other property right. Therefore,
the Licensor disclaims any and all liability towards the Licensee
arising out of any or all proceedings for infringement that may be
instituted in respect of the use, modification and redistribution of the
Software. Nevertheless, should such proceedings be instituted against
the Licensee, the Licensor shall provide it with technical and legal
assistance for its defense. Such technical and legal assistance shall be
decided on a case-by-case basis between the relevant Licensor and the
Licensee pursuant to a memorandum of understanding. The Licensor
disclaims any and all liability as regards the Licensee’s use of the
name of the Software. No warranty is given as regards the existence of
prior rights over the name of the Software or as regards the existence
of a trademark.

Article 10 - TERMINATION

10.1 In the event of a breach by the Licensee of its obligations
hereunder, the Licensor may automatically terminate this Agreement
thirty (30) days after notice has been sent to the Licensee and has
remained ineffective.

10.2 A Licensee whose Agreement is terminated shall no longer be
authorized to use, modify or distribute the Software. However, any
licenses that it may have granted prior to termination of the Agreement
shall remain valid subject to their having been granted in compliance
with the terms and conditions hereof.

Article 11 - MISCELLANEOUS

11.1 EXCUSABLE EVENTS

Neither Party shall be liable for any or all delay, or failure to
perform the Agreement, that may be attributable to an event of force
majeure, an act of God or an outside cause, such as defective
functioning or interruptions of the electricity or telecommunications
networks, network paralysis following a virus attack, intervention by
government authorities, natural disasters, water damage, earthquakes,
fire, explosions, strikes and labor unrest, war, etc.

11.2 Any failure by either Party, on one or more occasions, to invoke
one or more of the provisions hereof, shall under no circumstances be
interpreted as being a waiver by the interested Party of its right to
invoke said provision(s) subsequently.

11.3 The Agreement cancels and replaces any or all previous agreements,
whether written or oral, between the Parties and having the same
purpose, and constitutes the entirety of the agreement between said
Parties concerning said purpose. No supplement or modification to the
terms and conditions hereof shall be effective as between the Parties
unless it is made in writing and signed by their duly authorized
representatives.

11.4 In the event that one or more of the provisions hereof were to
conflict with a current or future applicable act or legislative text,
said act or legislative text shall prevail, and the Parties shall make
the necessary amendments so as to comply with said act or legislative
text. All other provisions shall remain effective. Similarly, invalidity
of a provision of the Agreement, for any reason whatsoever, shall not
cause the Agreement as a whole to be invalid.

11.5 LANGUAGE

The Agreement is drafted in both French and English and both versions
are deemed authentic.

Article 12 - NEW VERSIONS OF THE AGREEMENT

12.1 Any person is authorized to duplicate and distribute copies of this
Agreement.

12.2 So as to ensure coherence, the wording of this Agreement is
protected and may only be modified by the authors of the License, who
reserve the right to periodically publish updates or new versions of the
Agreement, each with a separate number. These subsequent versions may
address new issues encountered by Free Software.

12.3 Any Software distributed under a given version of the Agreement may
only be subsequently distributed under the same version of the Agreement
or a subsequent version.

Article 13 - GOVERNING LAW AND JURISDICTION

13.1 The Agreement is governed by French law. The Parties agree to
endeavor to seek an amicable solution to any disagreements or disputes
that may arise during the performance of the Agreement.

13.2 Failing an amicable solution within two (2) months as from their
occurrence, and unless emergency proceedings are necessary, the
disagreements or disputes shall be referred to the Paris Courts having
jurisdiction, by the more diligent Party.

Version 1.0 dated 2006-09-05.

Index

 B
 | C
 | D
 | E
 | F
 | G
 | M
 | O
 | R
 | S
 | T

B

 	
 	binary_biggest_region() (in module openalea.eartrack.eartrack)

C

 	
 	close() (in module openalea.eartrack.binarisation)

 	
 	color_tree() (in module openalea.eartrack.binarisation)

D

 	
 	decision_tree_threshold_phenoarch_1() (in module openalea.eartrack.binarisation)

 	decision_tree_threshold_phenoarch_2() (in module openalea.eartrack.binarisation)

 	derivate() (in module openalea.eartrack.eartrack)

 	
 	differential_cleaning() (in module openalea.eartrack.eartrack)

 	differential_separate() (in module openalea.eartrack.eartrack)

 	dilate() (in module openalea.eartrack.binarisation)

 	distance_transform() (in module openalea.eartrack.eartrack)

E

 	
 	ear_detection() (in module openalea.eartrack.eartrack)

 	
 	erode_dilate() (in module openalea.eartrack.binarisation)

F

 	
 	find_cross_route() (in module openalea.eartrack.eartrack)

 	
 	find_route() (in module openalea.eartrack.eartrack)

G

 	
 	get_distances() (in module openalea.eartrack.eartrack)

 	get_endpoints() (in module openalea.eartrack.eartrack)

 	
 	get_skeleton() (in module openalea.eartrack.eartrack)

 	get_view_angles() (in module openalea.eartrack.eartrack)

M

 	
 	majors_axes_regression_line() (in module openalea.eartrack.eartrack)

 	majors_axes_regression_ww() (in module openalea.eartrack.eartrack)

 	
 	mean_image() (in module openalea.eartrack.binarisation)

 	mean_shift_hsv() (in module openalea.eartrack.binarisation)

O

 	
 	open() (in module openalea.eartrack.binarisation)

R

 	
 	robust_majors_axes_regression_ww() (in module openalea.eartrack.eartrack)

 	
 	robust_mean() (in module openalea.eartrack.eartrack)

S

 	
 	side_analysis() (in module openalea.eartrack.eartrack)

 	
 	skeleton_cleaning() (in module openalea.eartrack.eartrack)

T

 	
 	threshold_hsv() (in module openalea.eartrack.binarisation)

 	
 	threshold_meanshift() (in module openalea.eartrack.binarisation)

 	top_analysis() (in module openalea.eartrack.eartrack)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Eartrack’s documentation

 		
 Installation

 		
 Source code installation with Miniconda

 		
 Miniconda installation

 		
 On Linux / Ubuntu / MacOS

 		
 On Windows

 		
 References

 		
 API Reference

 		
 binarisation

 		
 eartrack

_static/comment-bright.png

_static/ajax-loader.gif

